The following Electronic Design MCQs have been compiled by our experts through research, in order to test your knowledge of the subject of Electronic Design. We encourage you to answer these 70+ multiple-choice questions to assess your proficiency.
Please continue by scrolling down.
A. a tapped inductor
B. a tapped capacitor
C. no tapped inductor or capacitor
D. both a tapped inductor and a tapped capacitor
A. pulse generator
B. sine-wave generator
C. square-wave generator
D. triangular wave generator
A. 0
B. 100%
C. 110.21%
D. 121.13%
A. 0.169 Amp
B. 0.108 Amp
C. 0.118 Amp
D. 11.8 Amp
A. 50%
B. 25.73%
C. 39.73%
D. 30.11%
A. remain the same
B. immediately fall to zero
C. rise-up
D. rise a little and fall to zero
A. 1KΩ
B. 2KΩ
C. 3KΩ
D. 4KΩ
A. 0.2
B. 0.1
C. 0.5
D. 0.8
A. one should be p-n-p and the other should be n-p-n
B. Both should be either p-n-p or n-p-n
C. both should be n-p-n only
D. All of the above
A. the high stability of the crystal
B. the rigid crystal structure
C. the low XL/R ratio of the crystal
D. the high Q of the crystal
A. unilateral and astable
B. bilateral and astable
C. unilateral and bistable
D. bilateral and bistable
A. high current gain
B. high voltage gain
C. impedance matching
D. high power gain
A. 1000KHz
B. 1200KHz
C. 1600KHz
D. 2000KHz
A. triangular wave
B. square wave
C. sinusoidal wave
D. constant D.C signal
A. all frequencies
B. frequencies up to 300Hz
C. frequencies up to 30KHz
D. frequencies up to 300KHz
A. to exceed the current limit in forward direction
B. to apply a small voltage in the reverse direction
C. to dip it in water
D. to drop on the floor
A. for more than 90° but less than 180°
B. for more than 270° but less than 360°
C. for more than 180° but less than 360°
D. for more than 45° but less than 90°
A. 0.6 Vpp
B. 0.3 Vpp
C. v3 Vpp
D. v2 Vpp
A. lower than
B. higher than
C. equal to
D. None of the above
A. for one half cycle period of the input A.C signal
B. for full cycle period of the input A.C signal
C. for quarter cycle period of the input A.C signal
A. High current
B. High rate of the rise of the current
C. High temperature rise
D. High rate of the rise of the voltage
A. Thyristor
B. GTO
C. Triac
D. MOSFET
A. 100
B. 99
C. 33
D. 6
A. a Hartley Oscillator
B. a Colpitt’s Oscillator
C. a Tuned – Collector Oscillator
D. a Wien Bridge Oscillator
A. Class-A
B. Class-B
C. Class-C
D. Class-AB
A. 9W
B. 12W
C. 10.13W
D. 20.26W
A. 0 and 1
B. 1 and 2
C. 2 and 3
D. 3 and 4
A. SCR
B. UJT
C. Diac
D. Triac
A. slightly more than one
B. more than 100
C. less than one
D. None of the above
A. is positive
B. is zero
C. is negative
D. changes the sign on the application of the magnetic field
D.C current of a half wave rectifier is _____.
Here, Im = peak value of the input current.
A.
A
B.
B
C.
C
D.
DÂ
A. noise figure of 0dB
B. noise figure of more than 0dB
C. noise factor of unity
D. noise figure of less than 1dB
A. The collector-emitter terminals short-circuited
B. The emitter to ground connection open
C. The 10KΩ resistor open
D. The collector- base terminal short-circuited
A. Class-A
B. Class-B
C. Class-C
D. Class-D
Refer to the given image:
The circuit shown in the image has a zener regulated D.C power supply. Assuming that the zener diode is ideal, the minimum value of RL due to which the output voltage would remain constant will be ________.
A.
15ohm
B.
24ohm
C.
27ohmÂ
D.
45ohmÂ
A. Finite
B. Zero
C. Infinite
D. Unity
A. a radio transmitter
B. a radio receiver
C. a digital clock
D. an audio signal generator
A. very low
B. very high
C. dependant on the signal applied
D. None of the above
A. a Hartley Oscillator
B. a Colpitt’s Oscillator
C. a Tuned – Collector Oscillator
D. a Wien Bridge Oscillator
A. Vm [1 + cosa]/2p
B. Vm [1 + cosa]/p
C. Vm [1 + sina]/p
D. Vm [1 + sina]/2p
A. Step-up
B. Step-down
C. Cannot be determined
A. diffusion
B. masking
C. isolation
D. metallization
Refer to the given image:
The voltage at V1 and V2 of the arrangement shown in the image, will be _________ respectively.
A.
6V and 5.4V
B.
5.4V and 6V
C.
3V and 5.4V
D.
6V and 3V
A. multi-vibrator
B. Hartley
C. Armstrong
D. Colpitt’s
A. that it has high efficiency
B. that it requires very low D.C. supply
C. that its output frequency is substantially constant
D. that it has a low cost
A. limiting the bandwidth
B. matching the impedances
C. controlling the output
D. preventing the D.C from mixing with the input or output
A. IC-714
B. IC-147
C. IC-777
D. IC-741
A. Oscillaters
B. Schmitt trigger
C. Amplifiers
D. All of the above
A. 8*10-3
B. 9*10-3
C. 10*10-3
D. 7*10-3
A. 1
B. .99
C. 20
D. .01
A. CC
B. CE
C. CB
D. All of the above
A. A.C input
B. D.C input
C. Both A.C and D.C inputs
D. None of the above
A. 10A
B. 50A
C. 25A
D. zero
A. 5eV
B. 1eV
C. 0.1CeV
D. zero
A. more than 3 but less than 10
B. less than 20
C. more than 29
D. None of the above
A. Hartley oscillator
B. Colpitt’s oscillator
C. untuned collector oscillator
D. Wien-bridge oscillator
A. both the turn-off power loss and the turn-off time decrease
B. the turn-off power loss decreases but the turn-off time increases
C. the turn-off power loss increases but the turn-off time decreases
D. None of the above
A. below 10%
B. 10-20%
C. 20-25%
D. 25-30%
A. -R2/R1
B. R1/R2
C. -R1/R2
D. R1/(R1+R2)
A. 1%
B. 2%
C. 3%
D. 4%
A. 7.8 KHz
B. 3.2 KHz
C. 2.5 KHz
D. 780 Hz
A. rotating device
B. static electronic device
C. rotating electronic device
D. electro-mechanical device
A. bandwidth
B. input resistance
C. output resistance
D. both a and b
A. D.C signals only
B. A.C signals only
C. square waves
D. None of the above
A. in the cut-off region
B. just above the cut-off
C. at the center of load line
D. below the cut-off
A. 400 KHz
B. 600 KHz
C. 1000 KHz
D. 1600 KHz
A. 45°
B. 60°
C. 90°
D. 180°
A. 2 Vm/p
B. Vm/p
C. Vm/2p
D. 3Vm/p
A. Desiccation
B. Leukoplakia
C. Dermabrasion
D. Impetigo