These Structural Analysis multiple-choice questions and their answers will help you strengthen your grip on the subject of Structural Analysis. You can prepare for an upcoming exam or job interview with these 70+ Structural Analysis MCQs.
So scroll down and start answering.
A. above
B. below
C. equal to
A. bending
B. direct force
C. both bending and direct force
D. indirect force
E. bending and indirect force
A. EI
B. 1 / EI
C. E + I
D. 1 / E + I
A. P / 2
B. (P / 2)cosѲ
C. (P / 2)sinѲ
D. 2P
A. 100 kilo newtons
B. 115 kilo newtons
C. 125 kilo newtons
D. 135 kilo newtons
A. less than 50 meters
B. 100 meters
C. 150 meters
D. more than 200 meters
A. 20
B. 24
C. 28
D. 32
A. Built-in support
B. Hinged support
C. Roller support
A. 0
B. 1
C. -1
D. 2
A. Hoop stress
B. Compressive stress
C. Shear stress
D. Tensile stress
A. 1
B. 0
C. -1
D. ∞
A. 1
B. 0
C. ∞
D. 2
A. 2.8
B. 140
C. 9/5
D. 40
A. 0
B. 1
C. 12
D. 21
A. the neutral axis is away from the centre of curvature.
B. the neutral axis is towards the centre of curvature
C. the neutral axis is perpendicular to the center of the curvature.
A. half of the vertical intercept between the linear arch and the center line of actual arch.
B. twice the vertical intercept between the linear arch and the center line of actual arch.
C. one third of the vertical intercept between the linear arch and the center line of actual arch.
D. the vertical intercept between the linear arch and the center line of actual arch.
A. 31.8
B. 318
C. 3.18
D. .318
A. increase, decreases
B. increase, increases
C. decrease, increases
D. decrease, decreases
A. Castigliano's theorem of minimum strain energy
B. Maxwell-Mohr equations
C. Slope deflection method
D. Moment distribution method
E. a and b
F. c and d
A. ∂U + ∂T = λ
B. ∂U X ∂T = λ
C. ∂U - ∂T = λ
D. ∂U / ∂T = λ
A. 1
B. 2
C. -1
D. 3
E. 0
A. the plane of bending is parallel to a plane and lies in the same plane.
B. the plane of bending is perpendicular to a plane and lies in the same plane.
C. the plane of bending does not lie in the same plane.
A. 17
B. 18
C. 19
D. 20
A. horizontally
B. parabolically
C. vertically
D. tangentially
A. 30 newtons
B. 45 newtons
C. 48 newtons
D. 50 newtons
A. 8 newtons per meter
B. 10 newtons per meter
C. 12 newtons per meter
D. 14 newtons per meter
A. Point of contra flexure in each member does not lie at mid-span.
B. Point of contra flexure in each member does not lie at mid-height.
C. Axial stress in the column is inversely proportional to their distance from the centroidal vertical axis.
D. Axial stress in the column is directly proportional to their distance from the centroidal vertical axis.
A. torque
B. thrust
C. tension
D. twist
A. smaller than the diameter of the circular plate.
B. larger than the diameter of the circular plate.
C. equal to the diameter of the circular plate.
A. Ѳ
B. σ
C. Î
D. φ
A. 250 newton millimeters
B. 300 newton millimeters
C. 400 newton millimeters
D. 450 newton millimeters
A. half
B. two times
C. three times
D. one third
A. longitudinal stress
B. lateral stress
C. normal stress
A. five times
B. three times
C. two times
D. equal to
A. 4000 newtons
B. 5000 newtons
C. 6000 newtons
D. 7000 newtons
A. 1
B. 2
C. 0
D. ∞
A. one third of
B. equal to
C. twice
D. half of
A. 0
B. 1
C. 2
D. 3
A. 1
B. 0.5
C. 2.5
D. -1
A. 20 meters
B. 23 meters
C. 25 meters
D. 27 meters
A. thrust
B. torque
C. shear force
D. bending moment
A. Mi / Ms
B. Mi + Ms
C. Mi x Ms
D. Mi – Ms
A. hogging bending moment
B. sagging bending moment
C. absolute bending moment
A. 200 newtons
B. 220 newtons
C. 230 newtons
D. 240 newtons
A. 0
B. 1
C. -1
D. 2
E. ∞
A. 3
B. 4
C. 5
D. 6
A. 3
B. 6
C. 9
D. 12
A. 250 newton meters
B. 400 newton meters
C. 500 newton meters
D. 750 newton meters
A. 0
B. 1
C. 2
D. 5
A. 7
B. 10
C. 17
D. 27
A. Building having the highest number of storey's.
B. Building having the lowest number of storey's.
C. Building where the columns are least rigid.
D. Building where the columns are highly rigid.
E. a and d
F. b and c
A. linear
B. parabolic
C. hyperbolic
D. rectilinear
A. WL / 8
B. WL / 2
C. WL / 4
D. WL / 6
A. Mohr circle method
B. Circle of inertia method
C. Analytical method
D. Graphical method
E. a and b
F. c and d
A. 1.57 meters
B. 2.57 meters
C. 3.57 meters
D. 4.57 meters
A. I / L
B. I + L
C. I – L
D. I x L
A. It iterates the increments of the moments of the members.
B. It iterates the member end moments themselves.
C. It assumes that the moment of inertia of the members is not uniform.
D. The displacement of the joints is treated as unknowns.
A. unstable, plastic
B. stable, elastic
C. unstable, elastic
D. stable, plastic
A. 36
B. 72
C. 108
D. 144
A. 1
B. 0
C. 2
D. ½
A. between 2 wheel loads.
B. under the wheel load.
C. above the wheel load.
D. only at the side of the wheel load.
A. 0
B. 1
C. -1
D. ∞
A. 5 newtons per meter
B. 10 newtons per meter
C. 15 newtons per meter
D. 20 newtons per meter
A. 5 newtons per meter
B. 10 newtons per meter
C. 15 newtons per meter
D. 20 newtons per meter
A. 400 newtons meter
B. 500 newtons meter
C. 600 newtons meter
D. 700 newtons meter
A. 6
B. 4
C. 5
D. 2
A. Beam having one end hinged and one fixed.
B. Beam having both ends fixed.
C. Beam having both ends hinged.
A. ∞
B. 1
C. 0
D. 2
A. no
B. negative
C. positive
A. 0.5
B. 1
C. 2
D. 5
A. General substitute frames
B. Substitute frames for 2 panel wide building
C. Substitute frames for 1 panel wide building
D. Substitute frames for wall columns
A. 2 x 104 newton meter
B. 4 x 104 newton meter
C. 6 x 104 newton meter
D. 8 x 104 newton meter
A. Gravitational force
B. Magnetic force
C. Seepage force
D. Hydrostatic force