Answer these 200+ Mechanical Engineering MCQs and assess your grip on the subject of Mechanical Engineering.
Scroll below and get started!
A. Regularity
B. Consistency
C. Continuity
D. Frequency
A. deform permanently under mechanical stress
B. undergo elastic deformation
C. fracture under extreme loads
D. deform due to electromagnetic forces
A. Boiler heat production
B. Boiler horsepower
C. Burner heat potential
D. Burner heat product
A. Centrifugal fan configuration
B. Axial fan configuration
C. High velocity fan configuration
D. Vortex fan configuration
A. Desintigration
B. Oxygen depletion
C. Atomization
D. Conical spraying
A. Tensile strength
B. Shear strength
C. Elasticity
D. Flexibility
A. convection
B. steady state conduction
C. constant diffusion
D. advection
A. smooth-out
B. drag
C. brake fade
D. force fade
A. soldering
B. brazing
C. welding
A. strain threshhold
B. fatigue
C. fracture threshold
D. Yield strength
A. drill
B. milling machine
C. lathe
A. timelines
B. streaklines
C. streamlines
D. pathlines
A. Poisson Effect
B. Bellowing effect
C. Newton effect
D. Accordion effect
A. 500 kg/m^3
B. 4000 kg/m^3
C. 1 kg/m^3
D. 1000 kg/m^3
A. buoyancy
B. capillary action
C. surface tension
A. To increase airflow
B. To eliminate noise
C. To minimize vibration
D. To reduce friction
A. True
B. False
A. Superheat
B. Latent heat
C. Sensible heat
D. Thermal heat
A. Association for Service of Mechanical Equipment
B. American Standards for Mechanical Equipment
C. American Society of Mechanical Engineers
D. Association of Science and Materials Engineering
A. Radial velocity
B. Momentum
C. Inertia
D. Torque
A. generator
B. flywheel
C. motor
A. pinch
B. drag
C. thrust
D. lift
A. viscosity
B. fluidity
C. buoyancy
D. fluid tension
A. m^3/s
B. kg/m^3
C. no dimensions
D. Pascal second
A. shear modulus
B. Pascal's ratio
C. bulk modulus
D. Young's modulus
A. Expansion denominator
B. Expansion derivative
C. Expansion estimate
D. Expansion coefficient
A. Increased pliability
B. Hardened metal
C. Metal fatigue
D. Softened metal
A. Kinesetic
B. Newtonian
C. Motive
D. Kinematic
A. True
B. False
A. False
B. True
A. the absolute temperature of the body
B. the absolute temperature of the surrounding
C. the difference in temperatures between the body and its surroundings
A. casting
B. forging
C. forming
D. welding
A. Kinetic Energy and Potential Energy
B. Used energy and unused energy
C. Mechanical energy and electrical energy
D. Static energy and dynamic energy
A. True
B. False
A. Strength
B. Elasticity
C. Rigidity
D. Flexibility
A. Thermal, Osmosis and Linear
B. Steam, Flame and Hydronic
C. Tactile, Friction, and Combustion
D. Conduction, Convection and Radiation
A. Moving parts
B. Actives
C. Dynamics
D. Statics
A. clamp
B. jig
C. mould
D. die
A. Higher pressures can be derived
B. Lower pressures can be derived
C. Lower volumes can be derived
D. Higher volume can be derived
A. Carnot wheel
B. Ericsson wheel
C. Pelton wheel
A. Rack and Pinion
B. Epicyclic gear
C. Helical gear
D. Bevel gear
A. six
B. one
C. four
D. three
A. spring
B. gear train
C. pendulum
D. slider-crank
A. Movement
B. Work
C. Action
D. Motion
A. shear
B. compression
C. normal
D. tension
A. Farenheit
B. Watt
C. BTU
D. Ampere
A. temperature
B. pressure
C. volume
A. surface area exposed to air
B. material of heat sink
C. mechanical pressure on heat sink
A. Slice angle
B. Strike angle
C. Leverage angle
D. Rake angle
A. Crinkling
B. Smashing
C. Necking
D. Crunching
A. Glycol
B. Molybdate
C. Nitrite
D. Ammonia
A. To create mechanical advantage.
B. To establish geometric ratios
C. To lift heavy objects
D. Levers and pulleys are not considered simple machines.
A. Inertia
B. Acceleration
C. Balance
D. Momentum
A. to measure pitch of screw
B. To check thickness of clearance
C. to measure surface roughness
D. To measure radius of circular rod
A. transverse effect
B. Bulk material change
C. Young's Effect
D. Poisson Effect
A. linkage constant
B. mechanical advantage
C. speed factor
A. pressure
B. heat
C. temperature
D. volume
A. Install additional plates
B. Increase motor horsepower
C. Increase temperature delta
D. Increase motor rpm
A. compression ignition
B. hydraulic ignition
C. spark ignition
A. Angled openings
B. Dead space
C. Gapped teeth
D. Backlash
A. Shear Stress
B. Principle Stress
C. Von Mises Stress
D. Coulomb-Mohr
A. Orthogonal cutting
B. Diagonal cutting
C. Perpendicular cutting
D. Side cutting
A. CAD simulation
B. SWOT analysis
C. MATLAB simulatioin
A. JL/Ttheta
B. TL/Jtheta
C. Ltheta/JT
A. .433 lbs
B. 16.24 lbs
C. 64 lbs
D. 8.33 lbs
A. 5 psi
B. 50 psi
C. 15 psi
D. 1 psi
A. Vector Resolution
B. Vector Assesment
C. Vector calculus
D. Vector Calculation
A. The second law of Thermodynamics
B. The third law of Thermodynamics
C. The first law of Thermodynamics
D. The fourth law of Thermodyamics
A. Adhesive strength
B. Tensile strength
C. Shear strength
D. Cohesive strength
A. acceleration is constant
B. velocity is zero
C. velocity is constant
A. Block and bleed
B. Closed and vented
C. Stop and block
D. Normally open normally closed
A. radians per second
B. kg/m^2
C. kg.m^2
D. Newton meter
A. False
B. True
A. increase in speed
B. increase in volume
C. decrease in speed
A. High Ductility
B. High Toughness
C. High Hardness
D. High Stiffness
E. High Shear Strength
A. 1 hour
B. 24 hours
C. 8 hours
D. 12 hours
A. Propane and natural gas
B. Coal and wood
C. Natural gas and fuel oil
D. Gasoline and fuel oil
A. 0%
B. 50%
C. 100%
D. 25%
A. A positive displacement pump
B. A single stage centrifugal pump
C. A multi-stage centrifugal pump
D. A recriprocating pump
A. The shortest link can rotate fully with respect to a neighboring link.
B. The crank length is greater than the rocker length.
C. The mechanism contains more than one degree of freedom.
D. The coupler curve follows a symmetrical path.
A. The resultant temperture of the heat exchange process
B. The heat energy lost through system operation
C. The difference in temperature between supply and return on one side of the system
D. The difference in temperature between the two sides exchanging heat energy
A. Electricity and Steam
B. Steam and Gas
C. Gas and Electricity
D. Heating and Cooling
A. Equal and opposite axial stress on two mutually perpendicular planes, the planes being free of shear
B. Pure shear
C. Equal axial stress on two mutually perpendicular planes, the planes being free of shear
D. Uniaxial stress only
A. The beam becomes 8x stiffer.
B. The beam becomes 6x stiffer.
C. The beam becomes 4x stiffer.
D. The beam becomes 2x stiffer.
A. Sensible heat
B. Superheat
C. Latent heat
D. Thermodynamic energy
A. A second O-Ring seal to provide redundancy against failure
B. O-Rings made with special tolerances
C. O-Rings made from HNBR material to prevent failure
D. Additional rings which help prevent O-Ring extrusion
A. Compressibility factor
B. volume factor
C. ideal ratio
D. Boyle's ratio
A. Boyle's cycle
B. Brayton cycle
C. Rankine cycle
A. undefined
B. maximum
C. minimum
A. 0.05±0.01
B. 0.05±.01
C. .05±0.01
D. .05±.01
A. Breeching
B. Tailpipe
C. Flatpipe
D. Sideways run
A. Kelvins per ohm
B. Ohms
C. joules per Kelvin
D. Kelvins per Watt
A. 2 psi
B. .433 psi
C. .866 psi
D. .216 psi
A. The free leg
B. The light-weighted foot
C. The soft foot
D. The light leg
A. Tension
B. Torsion
C. Bending
D. Compression
A. To prevent motor overload
B. To relieve excess pressure
C. To unload all cylinders
D. To decrease the compressor capacity
A. Thomas truss
B. Pratt truss
C. Bowstring truss
D. King post
A. Particle image velocimetry
B. computational fluid dynamics
C. particle kinematics
A. X - axis : Normal Stress, Y - axis : Normal Strain
B. X - axis : Tensile Stress, Y - axis : Shear Stress
C. X - axis : Normal Stress, Y - axis : Shear Stress
D. X - axis : Stress, Y - axis : Strain
A. Centrifugal casting
B. Investment casting
C. Slush casting
D. Shell casting