Answer these 190 Quantitative Data Analysis MCQs and assess your grip on the subject of Quantitative Data Analysis.
Scroll below and get started!
A. Exact Map
B. Analysis map
C. Prior map
D. Unstructured map
A. Determined words
B. Predetermined words
C. Weak words
D. Relatable words
A. True
B. False
A. Grouping
B. Non-grouping
C. Aduit
D. Coding
A. Quantitative
B. Qualitative
C. Categories
D. None of above
A. Programming
B. Non-programming
C. Condensed
D. Categories
A. Discourse analysis
B. Condensed analysis
C. Condensed Transcript
D. None of above
A. Discourse analysis
B. Condensed analysis
C. Condensed Transcript
D. None of above
A. Descriptive Codes
B. Gisted Transcript
C. Non- descriptive Codes
D. Condensed Codes
A. Descriptive Transcript
B. Gisted Transcript
C. Non- descriptive Codes
D. Condensed Codes
A. Out-vivo Codes
B. In-vivo Codes
C. Descriptive Codes
D. All of these
A. Jeffersonian Transcript
B. Visual Transcript
C. Memo Transcript
D. None of these
A. Analysis
B. Saturation
C. Quotation
D. Memo
A. True
B. False
A. Analysis
B. Saturation
C. Quotation
D. Memo
A. Thematic Analysis
B. Saturation Analysis
C. Non-Thematic Analysis
D. Memo Analysis
A. Analysis
B. Themes
C. Prints
D. Saturation
A. True
B. False
A. Written Transcript
B. Verbatim Transcript
C. Audio Transcript
D. None of these
A. Written Transcript
B. Visual Transcript
C. Audio Transcript
D. None of these
A. True
B. False
A. Analysis of Variance (ANOVA)
B. Analysis of Variability (ANOVA)
C. Analysis of Variations (ANOVA)
D. None of these
A. Books
B. Assignments
C. Chapters
D. Abstract
A. True
B. False
A. Databook
B. Codebook
C. Sheets
D. Raw Data
A. Construct Validity
B. Content Validity
C. Code book
D. None of above
A. Construct Validity
B. Content Validity
C. Code book
D. None of above
A. Continuous Variables
B. Discrete Variables
C. Ending Variables
D. None of these
A. True
B. False
A. Rawsheet
B. Dataset
C. Variables
D. Nominals
A. Extraneous
B. Confounding
C. Extraneous or Confounding
D. None of these
A. True
B. False
A. Mix variables
B. Interval variables
C. Simple variables
D. Linear variables
A. Mean
B. Mode
C. Median
D. Skewed
A. Line
B. Midpoint
C. Curvy point
D. All of these
A. Median Imputation
B. Mean Imputation
C. Mode Imputation
D. None of these
A. True
B. False
A. Differences
B. Variability
C. Imputation
D. None of above
A. Mean
B. Mode
C. Median
D. Skewed
A. Positively Skewed
B. Negatively Skewed
C. Specific Skewed
D. Mix Skewed
A. Nominal Variables
B. Normal distribution
C. Decimal variables
D. Dominant Variables
A. Specific distribution
B. Normal distribution
C. Nominal distribution
D. All of these
A. True
B. False
A. Personal Correlation
B. Pearson Correlation
C. Parametric Correlation
D. None of these
A. True
B. False
A. Positively Skewed
B. Negatively Skewed
C. Mix Skewed
D. None of these
A. Variable
B. Range
C. Ration
D. Points
A. Line Variable
B. Ratio Variable
C. Range Variables
D. None of these
A. True
B. False
A. Sample Variance
B. Significance level
C. Sample variance
D. Sample validity
A. Sample Variance
B. Significance level
C. Sample variance
D. Sample validity
A. Sample Variance
B. Significance level
C. Sample variance
D. Sample validity
A. Simple Linear Regression
B. Simple Linear Regression or Multiple Regression
C. Multiple Regression
D. None of above
A. True
B. False
A. SPSS
B. SPSV
C. SPVS
D. SSSP
A. True
B. False
A. Standardizing Values
B. Non-Standardizing Values
C. Error Values
D. Coefficient Values
A. Error
B. Syntax
C. SPSS
D. Values
A. Three
B. Two
C. One
D. Four
A. Type-I Error
B. Type-II Error
C. Type-III Error
D. Type-IV Error
A. Type-I Error
B. Type-II Error
C. Type-III Error
D. Type-IV Error
A. True
B. False
A. Binary
B. Variance
C. Validity
D. None of above
A. Population similarities
B. Population Variance
C. Population Non-Variance
D. Population data
A. Binary Variables
B. Digital Variables
C. Mix Variables
D. Decimal Variables
A. Keypunching
B. Key Printing
C. Key typing
D. None of these
A. True
B. False
A. Criterion Validity
B. Non-Criterion Validity
C. Specific Validity
D. All of these
A. Developing theories that are grounded in the dataset
B. Moving from broad understandings of your data to identifying themes across the dataset
C. Interviewing participants from a variety of perspectives
D. Talking with colleagues about your data as a form of member-checking
A. Clearly labeling your data
B. Coding your data
C. Sharing your data with colleagues
D. Uploading your data to a public file-sharing site
A. Gisted
B. Condensed
C. Verbatim
D. Visual
A. Condensed
B. Visual
C. Verbatim
D. Jeffersonian
A. Visual
B. Gisted
C. Verbatim
D. Jeffersonian
A. In-vivo
B. Affective
C. A priori
D. Descriptive
A. In-vivo
B. A priori
C. Descriptive
D. Evaluative
A. Themes
B. Categories
C. Memos
D. Findings
A. To visually represent the conceptual framework
B. To assist in data analysis
C. To organize your literature review
D. To maintain transparency in the analysis process
A. Engaged time in the field
B. Comprehensive literature reviews
C. Robust data collection
D. A complex theoretical framework
A. Visualizing/Display feature
B. Memo feature
C. Quotation feature
D. Coding feature
A. True
B. False
A. True
B. False
A. True
B. False
A. T-Test
B. ANOVA
C. Simple linear regression
D. Chi-Square
A. Categorical variable
B. Interval variable
C. Binary variable
D. Ratio variable
A. Standard deviation
B. Mode
C. Median
D. Mean
A. If Leslie ran the experiment, 10 out of 100 times the results of the experiment would be attributed purely to chance.
B. If Leslie ran the experiment, 5 out of 100 times the results of the experiment would be attributed purely to chance.
C. If Leslie ran the experiment, 1 out of 100 times the results of the experiment would be attributed purely to chance.
A. T-Test
B. ANOVA
C. Simple linear regression
D. Chi-Square
A. To determine how variables relate to one another and whether one variable predicts or influences another
B. To familiarize themselves with patterns, trends, and frequencies in the data
C. To think critically about the types of variables involved in the study, as this will inform the type of inferential statistical test that will be run
D. To have a plan for structuring the dataset and noting any specific assignments that are made to variables
A. To determine how variables relate to one another and whether one variable predicts or influences another
B. To familiarize themselves with patterns, trends, and frequencies in the data
C. To think critically about the types of variables involved in the study, as this will inform the type of inferential statistical test that will be run
D. To have a plan for structuring the dataset and noting any specific assignments that are made to variables
A. Mean imputation
B. Pair-wise deletion
C. Case-wise deletion
D. List-wise deletion
A. Mean imputation
B. Normal distribution
C. Extraneous or confounding variables
D. Non-parametric data
A. An inventory of the individual variables in your dataset and their respective values
B. A programming language that allows practitioner-scholars to record each of their decisions regarding data management
C. The consistency of measurement or the degree to which your measure is replicable across multiple administrations
D. The data that practitioner-scholars use to complete their analysis
A. Report results
B. Prepare the dataset
C. Calculate descriptive statistics
D. Become familiar with the datase
A. Descriptive statistics
B. Correlational statistics
C. Inferential statistics
D. Predictive statistics
A. True
B. False
A. Qualitative
B. Quantitative
C. Specific
D. None of above
A. Base
B. Total
C. High
D. None of above
A. Trimodal
B. Bimodal
C. Singlemodal
D. All of these
A. True
B. False
A. One
B. Two
C. Three
D. Four